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Abstract 
 
Steady-state rigid-plastic finite element analysis coupled with strain gradient plasticity theory has been performed to 

examine the size effect of material on its plastic deformation behavior and find an optimal semi-cone angle of die 
which minimizes the drawing energy in the ultra-fine wire drawing process. A stream-line tracing method was adopted 
to calculate strain component at each element and a strain surface function was introduced to compute the equivalent 
strain gradient of each element. Introduction of this function enables us to use an established FE code without renewal 
of its main structure. Hence, the constitutive equation in FE formulation is changed to couple the strain gradient plastic-
ity. A series of FE simulation reveals that significant differences in drawing stress are observed when material size 
approaches its intrinsic material length. When the strain gradient plasticity theory is reflected on the steady-state FE 
analysis, the optimal semi-cone angle of the die is reduced by 30%. The variation of optimal semi-cone angle is attrib-
utable to considerable increment of homogeneous deformation when the material size reaches its intrinsic material 
length.   

 
Keywords: Micro wire drawing; Strain surface function; Strain gradient plasticity; Intrinsic material length; Finite ele-
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1. Introduction 

Ultra-fine sized wires are in great demand in manu-
facturing the pins of a semiconductor lead frame (di-
ameter >10 µm) of very large scale integration and 
the winding coil of a stepping motor (diameter > 1 
µm). To enhance the efficiency of very large scale 
integration and stepping motor, production of much 
smaller diameter of wire has been required. The key 
point in ultra-fine wire production is how to reduce 
the amount of breaking down of wire during the 
drawing process because frequent breaking down 
during the drawing process leads to low productivity. 

The breaking down of wire during drawing depends 
on various process conditions (semi-cone angle of die, 
lubrication, drawing speed, reduction ratio, etc.) as 
well as the material structure and its mechanical 
properties. If we focus on the process conditions to 
reduce the amount of breaking down of wire during 
drawing, we have to analyze the plastic deformation 
behavior of the material inside the die and the geo-
metric parameters of die using plasticity theory. 
However, the conventional plasticity theory has a 
limitation when material size is reduced to fractions 
of microns. Finite element analysis linked with the 
conventional plasticity theory simply shrinks the 
analysis region as the material size is reduced.  

Recently, there have been investigations regarding 
plastic deformation behavior of material when its 
physical size scales down from tens of microns to a 
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fraction of microns. In classical mechanics, the strain 
(or stress) subject to an external loading remains un-
changed where the deformation and loading are pro-
portional to each other even though material size is 
different. If its size is reduced to fraction of microns, 
the stress in micro-sized material is bigger than that of 
millimeter-sized material [1-3]. This is called the ‘size 
effect’. The theory that takes into account the size 
effect during deformation is called the strain gradient 
plasticity. Important parameters in the strain gradient 
plasticity, which derive the size effect, are equivalent 
strain gradient and intrinsic material length of mate-
rial being deformed. 

Hence, if strain gradient plasticity theory is intro-
duced in deformation analysis, the size effect should 
be reflected on the governing equation, and subse-
quently we can see the size effect on the deformation 
behavior. Several studies using finite element method 
coupled with strain gradient plasticity have been pre-
sented. These can be divided mainly into two groups: 
analysis of micro-indentation [4, 5] and study of crack 
initiation and propagation [6, 7]. In their studies, dis-
placement-based higher-order continuum theory was 
adopted to finite element formulation. Since the early 
strain gradient theory [1-3] involves higher order 
stress, the equilibrium equation and boundary condi-
tions are essentially complicated, which causes diffi-
culties in obtaining a solution. To overcome this diffi-
culty, Huang et al [8] proposed a method in which the 
strain gradient effect could be included in analysis 
using conventional equilibrium equation and bound-
ary conditions. Huang’s method gives an accurate 
solution except at the very near surface of material as 
much as the method that involves the complicated 
equilibrium equation and boundary conditions.  

In the aforementioned works [1-8], however, FE 
implementation coupled with strain gradient was 
carried out by the spatial derivative of element inter-
polation function, i.e., shape function. This procedure 
requires much programming effort since it changes 
the entire parts of the FE formulation. Therefore, an 
established FE code is useless if one tries to revamp 
the structure of FE code. Moreover, those approaches 
based on the elastic-plastic deformation make the 
analysis complicated since the plastic zone grows 
during deformation and subsequently, internal elastic-
plastic boundaries are obscure. Hence, the algorithmic 
treatment of internal elastic-plastic boundaries in FE 
implementations with strain gradient considered is 
significantly difficult [9]. To overcome those prob-

lems, Byon and Lee [10] presented a rigid-plastic 
based FE approach with strain gradient effect consid-
ered.  

In this paper, we present a more effective method-
ology for rigid-plastic FE implementation coupled 
with strain gradient plasticity in the analysis of the 
general steady-state metal forming process. For this 
purpose, the concept of strain surface function is in-
troduced to include the effect of strain gradient into 
the conventional FE formulation used for metal form-
ing analysis. The advantage of the proposed method 
is that an established conventional FE code can be 
used in the analysis of micro-sized material without 
changing the structure of the main FE program. 

We employed rigid-plastic steady-state FE formu-
lation [11] joined with the strain gradient plasticity 
and applied it to a micro wire drawing process. The 
characteristic of this FE formulation is that the mesh 
is fixed since the process configuration does not 
change with time, and its nodal velocities are solved 
under given boundary conditions. According to the 
work-hardening characteristics of the material, these 
nodal velocities are iteratively updated depending on 
the elemental strain distribution which is specially 
calculated. Hence, this method is suitable when the 
amount of main deformation is very large compared 
with initial and final deformation such as rolling, 
drawing and extrusion.  

To examine the size effect of material on the semi-
cone angle of die and drawing energy, specimens 
with diameter of 2.0 µm and 20.0 µm are considered. 
The semi-cone angles selected in FE simulation are 30, 
50, 70 and 90, respectively. To understand better the 
variation of optimal semi-cone angle in terms of ma-
terial size being deformed, we compute the energy 
components (homogeneous deformation, friction, 
shear deformation) required in drawing process. We 
adopt the method of least squares to calculate the 
strain gradient tensor, i.e., the spatial derivative of 
strain tensor. This method allows us to determine the 
strain surface function, which consists of a corre-
sponding element and elements surrounding it. Mate-
rial used in this study is polycrystalline copper.  

 
2. Strain gradient plasticity 

Researchers in early stages tried to investigate the 
size effect phenomenologically through experiment. 
They carried out torsion, bending and indentation 
tests, and focused deformation behavior for microme-
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ter-sized and millimeter-sized materials.  
Fleck and Hutchinson [1] attributed this size effect 

to the strain gradient which was not considered in the 
conventional plasticity and developed a higher order 
equilibrium equation to reflect the size effect. They 
introduced a parameter ‘intrinsic material length’, 
related it to the unknowns and finally determined the 
unknowns through experiments. Nix and Gao [2] 
tried to make a quantitative correlation for this pa-
rameter and the properties. Using Taylor’s dislocation 
model [12, 13], they proposed a flow stress equation 
that contains the strain gradient and intrinsic material 
length, and proved its accuracy through micro-
indentation test. Gao et al [3] extended it to more 
general type of flow stress equation which includes 
equivalent strain gradient and intrinsic material length. 
They finally proposed mechanism-based strain gradi-
ent (MSG) plasticity theory. MSG theory [3], how-
ever, still includes a higher order equilibrium equa-
tion and consequently needs additional boundary 
conditions to solve the equilibrium equation.  

Recently, Huang [8] proposed a modified MSG 
plasticity model that does not require a higher order 
equilibrium equation and additional boundary condi-
tions. In this approach, the equilibrium equation and 
boundary condition are the same with those of con-
ventional continuum mechanics. The difference is 
that the equivalent strain gradient is included in the 
constitutive equation. This approach has, however, 
limitation in application to deformation analysis on 
the very near surface of material 

 
2.1 Flow stress - dislocation density 

Taylor [12, 13] expressed the flow stress at contin-
uum level in terms of several parameters at micro 
level.  

 
Mσ τ=   

 M bαµ ρ=  (1) 

   S GM bαµ ρ ρ= +   

 
M , called Taylor factor, represents a conversion 
factor between critical resolved shear stress, τ  of 
crystalline slip system and the flow stress, σ . In case 
of FCC (face centered cubic) metal, 3.06M =  [8]. α 
stands for material-dependent constant and µ, b, ρ 
represent shear modulus, magnitude of Burgers vector 
and dislocation density. Sρ represents statistically 
stored dislocation (SSD) and Gρ geometrically nec-

essary dislocation (GND). The concept of SSD and 
GND was first proposed by Ashby [14]. 
 
2.2 Flow stress - intrinsic material length 

When material size is reduced to micrometer size, 
its flow stress is described as a function of strain, 
strain gradient and intrinsic material length. This is a 
basic principle of strain gradient plasticity and the 
equation for the flow stress is given in the form [3] 

 
2 ( )ref fσ σ ε χη= +  (2) 

 
where refσ and ( )f ε  represent reference stress and 
work hardening function of the yield stress curve 
obtained from uni-axial tensile test. η  is equivalent 
strain gradient. χ  represents the intrinsic material 
length and is a parameter which plays a role to make 
the flow stress dependent upon the material size at 
micro level.  

In one-dimensional deformation, χη  in Eq. (2) 
can be approximated as 

 
( / ) ( / )x xχη χ ε χ ε≈ ∆ ∆ = ∆ ∆        (3) 

 
x∆  and χ  are, respectively, the characteristic 

length and intrinsic length of material. When x∆  
has a similar order compared with χ , χη  influ-
ences the flow stress behavior significantly. But 
where x χ∆ >> , χη  in Eq. (3) comes close to zero. 
Hence, Eq. (2) becomes the flow stress equation em-
ployed in the conventional plasticity. Huang et al. [8] 
suggested an explicit form of χ  as follows:  
 

2

2 2

ref

M r bµχ α
σ
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

 (4) 

 
r  is the Nye factor which represents the average 
ratio of geometrically necessary dislocation to the 
most efficient configuration of polycrystalline mate-
rial [8]. In case of FCC polycrystalline material, r  
is about 1.9. For polycrystalline copper, its mechani-
cal properties and intrinsic material length are listed 
in Table 1. We know that the size of χ  is a few 
micrometers. 
 
2.3 Flow stress in terms of macroscopic and micro-

scopic parameters 

Substituting Eq. (4) into Eq. (2) and comparing 
with Eq. (1) yields an explicit form of statistically  
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Table 1. Material constants and intrinsic material length for 
polycrystalline copper. 
 

Material constants Symbols Values 
Coefficient of the Taylor’s 

dislocation model α  0.3 

Shear modulus(GPa) µ  42 
Coefficient stress of yield 

function* (MPa) refσ  688 

Magnitude of the Burgers 
Vector (nm) b 0.255 

Intrinsic material length(µm) χ  1.54 
*Yield function for polycrystalline copper was 0.3688ε . 

 
stored dislocation and geometrically necessary dislo-
cation as follows: 

 
2( )ref

S

f
M b
σ ε

ρ
αµ

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

and G r
b
ηρ =  (5) 

 
Consequently, the flow stress can be expressed as a 

function of macroscopic and microscopic parameters. 
Combination of Eq. (5) and (1) yields flow stress as 
follows: 

 
2( )ref f

M b r
M b b
σ ε ησ αµ

αµ
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

 (6) 

 
2.4 Strain gradient tensor and equivalent strain gra-

dient 

The strain gradient is defined as twice differentia-
tion of the displacement field: 

 
,ijk k ijuη =  (7) 

 
The definition of strain expressed in terms of dis-
placement, , ,1 2( )ij i j j iu uε = + is differentiated until 

,k iju  is left. If we change the index notation of it prop-
erly, Eq. (7) can be rewritten as 
 

, , ,ijk ik j jk i ij kη ε ε ε= + −  (8) 

 
Similar to the equivalent strain in the conventional 

plasticity, the concept of equivalent strain gradient is 
introduced. The equivalent strain gradient is ex-
pressed in terms of three invariants [3]. 

 

1 2 3iik jjk ijk ijk ijk kjic c cη η η η η η η= + +  (9) 

Application of Eq. (9) to three type of tests, i.e., 
plane strain bending, pure torsion and axisymmetric 
void growth experiment yields algebraic equations in 
terms of 1 3~c c . Solving the algebraic equations 
gives 1 0c = , 2 1/ 4c =  and 3 0c =  [3]. Therefore, 
the equivalent strain gradient is 

 
1
4 ijk ijkη η η=  (10) 

 
3. Finite element analysis with strain gradient 

considered  

3.1 Boundary value problem with strain gradient 
plasticity  

We have the following boundary value problem 
applicable to deformation of micro-sized material 
with the flow stress model (Eq. (6)): 

 
- Equilibrium equation: , 0ij j dFσ + =  (11) 

- Constitutive equation: 
 

22 ( )
3

ij ref
ij

f
M b r

M b b
ε σ ε ησ αµ
ε αµ

⎡ ⎤⎛ ⎞⎢ ⎥′ = +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

&

&
 (12) 

 
where, ij ij ijpσ δ σ ′= − +   

 
- Incompressibility condition: , 0i iv =  (13) 
- Boundary conditions: ij j in hσ =  and i iv v=  (14) 

 
dF  represents the distributed force vector acting on 

entire analysis domain. p, hi and iv  stand for hydro-
static pressure, traction vector and velocity vector of 
particle. The strain rate tensor, ijε&  is related to the 
velocity gradient, i.e., ( ), ,1/ 2ij i j j iv vε = +& . ε& repre-
sents equivalent strain rate. 

The equilibrium equation can be rewritten in terms 
of velocity and hydrostatic pressure by substituting 
the constitutive equation and the strain rate-velocity 
relation into Eq. (11). Solving this equation with the 
boundary conditions, we can obtain the velocity and 
hydrostatic pressure field. The velocity and hydro-
static pressure fields are then substituted for the defi-
nition of strain rate, equivalent strain rate, strain and 
strain gradient. 
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3.2 Calculation of element strain components in 
steady-state metal forming  

Fig. 1 illustrates a schematic which calculates the 
components of elemental strain in steady-state metal 
forming. Solid marks represent the elements at which 
the strain components are calculated. Empty marks 
denote elements on the streamline used in strain cal-
culation of the given element. It is shown that stream-
lines are distinguished by the shapes of mark. 

If kx  is denoted as the current position on the 
given streamline, a neighboring point 1k+x on the 
same streamline which is sufficiently close to a point 

kx  can be approximately given by 
 

1k k k kt+ = + ∆x x v  where k s
k
s

xt
v
∆

∆ =  (15) 

 
kv represents the velocity vector at the point kx . 

k
sv  stands for its magnitude, and sx∆ denotes a 

marching step size. Using Eq. (15), a streamline may 
be traced backward starting from the element center 
to a point on the inlet boundary. 

The element strain components can then be evalu-
ated by integrating the evolution equation along the 
streamline starting from the point on the inlet bound-
ary, as follows: 

 

1 1k k k
ij ij ijε ε ε+ += + ∆  where 

1
1

k
ijk

ij s
s

dx
v
ε

ε
+

+∆ = ∫
&

 (16) 

     

 

 
 
Fig. 1. Conceptual diagram to present the calculation of strain 
components along streamline. 

k
ijε  and 1k

ijε
+  are the strain components at the 

points kx and 1k+x , respectively. 1k
ijε
+∆ represents 

the increment of strain components between 
kx and 1k+x , and can be calculated by integrating the 

components of strain rate, 1k
ijε
+&  along the streamline.  

Equivalent strain is calculated in the same manner 
 

1 1k k kε ε ε+ += + ∆  (17) 
1
2

1 1 12
3

k k k
ij ijε ε ε+ + +⎛ ⎞∆ = ∆ ∆⎜ ⎟

⎝ ⎠
 (18) 

 
It should be noted that the increment of equivalent 

strain, 1kε +∆ can also be calculated by the direct inte-
gration of equivalent strain rate, 1kε +&  as follows: 

 
1

1
k

k
s

s

dx
v
εε

+
+∆ = ∫

&
 (19) 

 
Since the equivalent strain rate is a scalar quantity, 

the equivalent strain computed by the direct integra-
tion of equivalent strain rate (Eq. (19)) may serve as 
the benchmark with which the validity of the strain 
components calculated by Eq. (16) can be examined.  

Fig. 2 shows FE meshes and boundary conditions 
employed for a steady-state wire drawing process. 
Since the cross section of the wire is circular during 
deformation, axisymmetric deformation analysis (R-Z 
coordinates) has been carried out. Symbols A~D 
stand for points selected for calculating elemental 
strain components. Elemental strains at points A~D 
indicate the values integrated along stream line traced. 
Since axisymmetric deformation is considered, strain 
components, εRR, εθθ, εZZ, and εRZ are calculated.  

In Table 2, equivalent strains calculated from strain 
components (Eqs. (17) and (18)) are compared with 
those obtained by directly integrating equivalent 
strain rate (Eq. (19)). Equivalent strains at points  

 
 

 
 
Fig. 2. Boundary conditions and finite element meshes for the 
analysis of wire drawing. A-D indicate the points where 
strain components and equivalent strains are calculated for 
numerical tests. 
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Table 2. Comparison of equivalent strain ( ε ) calculated from 
strain components and one directly integrated from equiva-
lent strain rate. 
 

 A B C D 

εRR -0.0417 -0.1601 -0.1610 -0.1774

εθθ -0.0458 -0.1732 -0.1781 -0.1774

εZZ 0.0875 0.3333 0.3391 0.3548 

εRZ 0.0884 0.0753 0.0879 0.0341 
ε by Eqs. (17) 

and (18) 0.1671 0.3578 0.4381 0.3593 

ε by Eq. (19) 0.1671 0.3578 0.4381 0.3593 

 
 

A~D calculated from both methods are exactly the 
same. This implies that we can calculate the strain 
components by component-wise integration of the 
components of strain rate (Eq. (16)). We can also 
observe that incompressibility conditions at points 
A~D are perfectly satisfied (εRR+εθθ+εZZ=0). 
 
3.3 Strain surface function and calculation of ele-

ment strain gradient 

In this study, we introduce a strain surface function 
(SSF) to calculate the strain gradient tensor, i.e., the 
spatial derivative of the strain tensor. The SSF means 
an analytic surface composed of a group of elemental 
strain components. To model the analytic surface, we 
adopt the method of least squares and determine a 
strain surface function (SSF), which consists of a 
corresponding element and elements surrounding it 
(Fig. 3). It is assumed that the distribution of strain 
along elements is continuous and does not have a 
radical change. The number of elements surrounding 
the corresponding element determines the number of 
elements included in the SSF. A set of elements in-
cluded in the SSF for the corresponding element is 
called an “element cluster” hereafter. The number of 
elements in the element cluster is more than nine. If 
the number of elements is less than nine, an element 
layer is added. 

As the strain surface function (SSF), we choose a 
quadratic function as follows: 

 
0 1 2 3

2 2
4 5

( ) ( ) ( ) ( ) ( )

( ) ( )
ij m ij m ij m ij m ij m

ij m ij m

R Z RZ

R Z

ε β β β β

β β

= + + +

+ +

%
  

 (20) 
 

( )ij mε% represents the quadratic function at the mth ele-
ment and 0 5( ) ~ ( )ij m ij mβ β  coefficients. R and Z  

 
 
Fig. 3. Schematic diagram of an element cluster and strain 
surface function of strain components. 

 
stand for coordinates of the element cluster. It is de-
fined the solution of Eq. (20) to be the coefficient 

0 5( ) ~ ( )ij m ij mβ β  that minimizes the sum of the 
square, ( )ij mΨ  
 

( ) ( ) 2

1

( )
n

ij m ij ijk m
k

ε ε
=

⎡ ⎤Ψ = −⎣ ⎦∑ %  (21) 

 
where, n is the entire number of elements in an ele-
ment cluster and ( )ij kε  represents the value for strain 
in the element cluster. In order for Eq. (21) to be 
minimum, its partial derivatives with respect to 

0 5( ) ~ ( )ij m ij mβ β , should be equal to zero.  
 

( )
0, ( 0,1, ...,5)

( )
ij m

p ij m

p
β

∂ Ψ
= =

∂
 (22) 

 
Eq. (22) is rewritten in a matrix form as follows:   
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( )
( )
( )
( )
( )
( )

1

0

1
1

2 1

3

1
4

2

5 1

2

1

( )

( )

( )

( )

( )

( )

n

ij k
k

n
ij m

k ij k
k

ij m n

k ij k
ij m k

n
ij m k k ij k

k
ij nm

k ij k
ij km

n

k ij k
k

R

Z

R Z

R

Z

ε

β ε
β

εβ

β ε
β

εβ

ε

=

=

=

=

=

=

⎡ ⎤
⎢ ⎥
⎢ ⎥

⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎢ ⎥

⎢ ⎥
⎢ ⎥⎣ ⎦

∑

∑

∑

∑

∑

∑

 (23) 

 
Solving Eq. (23) gives the coefficients, 

0 5( ) ~ ( )ij m ij mβ β and consequently the quadratic func-
tion at the mth element, i.e., Eq. (20) is fully deter-
mined. Finally, the strain gradient at mth element is 
obtained by differentiating the quadratic function with 
respect to R and Z, respectively. 

 

1 3 4

( )
( , )

( ) ( ) 2( )

ij m
ij R m

ij m ij m ij m

R
Z R

ε
ε

β β β

∂
≈

∂
= + +

%

 (24) 

2 3 5

( )
( , )

( ) ( ) 2( )

ij m
ij Z m

ij m ij m ij m

Z
R Z

ε
ε

β β β

∂
≈

∂
= + +

%

 (25) 

 
3.4 Computational procedure 

In the following, a procedure which analyzes the 
steady-state wire drawing process using finite element 
method coupled with the strain gradient plasticity 
theory and strain surface function (SSF) is described 
in detail. A flow chart for the procedure is illustrated 
in Fig. 4. 

Step(1) Generate a finite element mesh and pre-
scribe input parameters and boundary conditions for a 
given analysis domain. 

Step(2) Make an initial guess of the equivalent 
strain ( )ε and equivalent strain gradient ( )η . 

Step(3) Based on ε  and η , compute the flow 
stress ( )σ to evaluate the element stiffness matrix of 
finite element formulation. 

Step(4) Perform the steady-state finite element 
analysis to obtain nodal velocity as a solution. From 
the strain rate – velocity relations, calculate strain rate 
at each element.  

Step(5) Trace entire streamlines by predicting se-
quentially the final positions in all elements through 

the streamline passing. Sum up the increment of 
equivalent strains on a given streamline and update 
the equivalent strains for all elements.  

Step(6) To calculate the strain surface function 
(SSF) and the strain gradient, determine the range of 
the element cluster. It is based on the nodal connec-
tivity of mesh system used in finite element analysis, 
as shown in Fig. 3. 

Step(7) Apply the method of least squares to the 
elements belonging to the element cluster and obtain 
the strain surface function (SSF). The SSF (Eq. (20)) 
is calculated repeatedly as many as the total number 
of elements included in analysis domain. 

Step(8) Calculate the strain gradient components 
through differentiating the SSF with respect to R and 
Z direction. Each element has the two components of 
strain gradient in this problem. Compute the equiva-
lent strain gradient at each element using Eq. (10). 

Step(9) Perform solution process until the frac-
tional norm of equivalent strain and strain gradient 
reaches the target. Otherwise, repeat the steps (3)-(8). 

 
4. Results and discussion 

In finite element simulation, four different semi-
cone angles and two different sizes of input specimen 
are considered to examine the size effect. A larger 
semi-cone angle indicates a steeper slope of contact 
length between material and die with respect to center 
line. Consequently, the die length decreases as the 
semi-cone angle increases. We use the abbreviations 
‘S’ and ‘L’ to distinguish the difference of material 
size. Material ‘S’ indicates input specimen with di-
ameter of 2 µm (therefore, its radius is 1 µm in axi-
symmetric analysis.) and material ‘L’ input specimen 
with diameter of 20 µm (thus, its radius is 10 µm in 
axisymmetric analysis). The background for this 
choice is as follows. The material selected in the FE 
simulation is polycrystalline copper and its intrinsic 
material length is 1.54 µm. Hence ‘S’ has a strong 
effect of intrinsic material length during deformation, 
while ‘L’ has a weak effect of that. For all cases, the 
reduction ratio is the same as 29.44% and Coulomb’s 
friction model with the coefficient 0.05 is employed 
in the analysis.  

Fig. 5 shows the R-directional strain distribution 
(εRR) during deformation when the semi-cone angle is 
30 and 90 for different material sizes, ‘S’ and ‘L’. For 
convenience, the analysis domain of material size ‘S’ 
is enlarged greatly. Note that results to which the 
conventional plasticity is applied appear on the right  
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Fig. 4. Flow chart which conducts the steady-state finite 
element analysis coupled with strain gradient plasticity and 
strain surface function. 
 

 
 
Fig. 5. R-directional strain (εRR) distribution for different 
semi-cone angles and analysis methods. 
 
hand side. Results to which the strain gradient plastic-
ity is applied appear on the left hand side. From the 
viewpoint of strain distribution, almost no variations 
are observed at the exit if material size ‘L’ (radius: 10 
µm) is deformed. When material size ‘S’ (radius: 1 
µm) is deformed, we can see some differences in 
strain distribution. The difference is more clear when 
the semi-cone angle is 90

 but not so noteworthy. This 
is by reason that the strain component does not de-
pend on the analysis methods (conventional plasticity 
or strain gradient plasticity) even though material size 
and die geometry change somehow. 

 
 
Fig. 6. Equivalent strain gradient (η ) distribution for differ-
ent semi-cone angles and analysis methods. 

 

 
 
Fig. 7. Flow stress (σ ) distribution for different semi-cone 
angles and analysis methods. 

 
Fig. 6 illustrates the equivalent strain gradient dis-

tribution when the semi-cone angle is 30 and 90 for 
different material size, ‘S’ and ‘L’. This is calculated 
on the basis of its definition, Eq. (10) and a series of 
equations from Eq. (20) to Eq. (25) representing the 
strain surface functions and its derivatives. The distri-
bution of equivalent strain gradient is different, de-
pending on material size. This is ascribed to the 
shorter geometric length of material size ‘S’ than that 
of material size ‘L’ when the same amount of strain 
changes (see Fig. 5). Much more difference is ob-
served when the semi-cone angle is 90. But, the analy-
sis methods (strain gradient plasticity and conven-
tional plasticity) do not influence the results since 
strain and strain gradient are outcomes of geometrical 
definition. The equivalent strain gradient distribution 
is reflected in the constitutive equation for the strain 
gradient plasticity only as noted in Eq. (12).  

Fig. 7 shows the flow stress distribution in the ma-
terial being deformed. When the material size ‘L’ is 
deformed in the 30

 of semi-cone angle, almost no 
difference is monitored. If the size ‘L’ is deformed in 
the 90

 of semi-cone angle, a small difference is noted. 
When the material size is reduced to ‘S’ we can see a 
distinct difference of flow stress distribution, espe-
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cially in case of 90
 of semi-cone angle which takes 

more drastic deformation than 30
 of semi-cone angle. 

This indicates that size effect is considerable when 
material size is close to intrinsic material length and 
deformation is radical due to the geometry of a form-
ing tool. 

The flow stress is one of the effective tools for es-
timating whether the strain gradient plasticity is active 
or not. The flow stress in Eq. (2) is composed of the 
deformation resistance by work hardening and the 
one by strain gradient. The effect of strain gradient on 
the flow stress is dependent of the characteristic 
length (∆x) of material relative to the intrinsic mate-
rial length (χ) as described in Eq. (3). In this problem, 
the characteristic length is the wire diameter. Since 
the intrinsic material length is a material constant that 
is experimentally measured from various tests [8], the 
characteristic length, i.e., the wire diameter, deter-
mines the effect of the strain gradient. As the charac-
teristic length approaches its intrinsic length, χ/∆x 
comes near 1.0. and then the effect of strain gradient 
on the flow stress is significant. But if the characteris-
tic length is much larger than the intrinsic length, 
χ/∆x comes close to 0.0 and therefore the effect of it 
is negligible. These are unified results deduced from 
the various mechanical tests by aforementioned stud-
ies [1-8]. It should be noted that these results are al-
ways applicable to the present micro drawing prob-
lem, as shown in Fig. 7.  

The effect of material size on an optimal semi-cone 
angle is examined and results are shown in Fig. 8. 
The difference in drawing stress between the analysis 
methods (strain gradient plasticity and conventional 
plasticity) is summarized in Table 3. When conven-
tional plasticity is used, no difference between mate-
rial size ‘S’ and ‘L’ in the drawing stress is noted. In 
case of material size ‘L’, the fact whether strain gra-
dient concept is considered or not influences drawing 
stress variation little (the maximum difference in 
drawing stress is 7.6% at semi-cone angle 90). How-
ever, when material size ‘S’ is deformed, we can 
clearly see the effect of material size on an optimal 
semi-cone angle. In this case, the maximum differ-
ence in drawing stress is 58.5% at semi-cone angle 90. 
This result indicates that if the material size is nearly 
the intrinsic material length, the optimum angle might 
be changed. This means that we should design again a 
drawing die with material size decreased so that we 
can reduce the amount of breaking down of wire dur-
ing drawing. 

Table 3. Differences in drawing stresses calculated from the 
strain gradient plasticity and conventional plasticity. 
 

Drawing stress(MPa) Semi-cone
angle 

Material 
size(dia.) SGP* CP** 

Diff.
(%) 

2.0 µm 305.94 247.99 23.4
30 

20.0 µm 253.55 247.14 2.6 

2.0 µm 299.76 220.56 35.9
50 

20.0 µm 229.60 220.20 4.3 

2.0 µm 314.49 212.70 47.9
70 

20.0 µm 224.98 212.67 5.8 

2.0 µm 342.91 216.32 58.5
90 

20.0 µm 232.88 216.38 7.6 

*SGP represents the strain gradient plasticity. 
**CP represents the conventional plasticity. 

 

 
 
Fig. 8. Variation of drawing stress with material size, strain 
gradient and semi-cone angle changed. SGP and CP represent 
the strain gradient plasticity and the conventional plasticity, 
respectively.  

 
Fig. 9 shows homogeneous deformation energy, 

friction energy, shear deformation energy required in 
the drawing process in terms of semi-cone angle for 
material size ‘L’. Total energy is a summation of 
those energy components. To compare these energies, 
they are calculated as quantities per unit volume. Sol-
id line indicates energies computed from strain gradi-
ent plasticity (SGP) and dashed line energies calcu-
lated from conventional plasticity (CP). Almost no 
difference is observed in friction energy and shear 
deformation energy. Some differences are visible in 
homogeneous deformation energy, but the difference 
is small. Shear deformation energy increases linearly 
as semi-cone angle does. This is what we have ex-
pected. Meanwhile, friction energy is reduced by 
more than 50% as the semi-cone angle increases from  
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Fig. 9. Composition of drawing energy per unit volume when 
the incoming wire diameter is 20 µm (Material size ‘L’). SGP 
and CP represent the strain gradient plasticity and the con-
ventional plasticity, respectively. 

 

 
 
Fig. 10. Composition of drawing energy per unit volume 
when incoming wire diameter is 2 µm (Material size ‘S’). 
SGP and CP represent the strain gradient plasticity and the 
conventional plasticity, respectively. 

 
30 to 90. This is because the longitudinal length of die 
decreases from 31.2 µm to 10.3 µm as the semi-cone 
angle increases from 30 to 90. 

Fig. 10 shows homogeneous deformation energy, 
friction energy, shear deformation energy in terms of 
semi-cone angle for material size ‘S’. When the con-
cept of strain gradient is not reflected in deformation 
analysis, homogenous deformation energy is practi-
cally constant. However, the homogenous deforma-
tion energy increases linearly with semi-cone angle 
increased if the strain gradient theory is considered. 
This might be attributed to the effect of material size 
coupled with geometrical configuration, i.e., semi-
cone angle, on the homogeneous deformation energy. 

Note that the homogeneous deformation energy is 

calculated from components of normal stresses and 
normal strains. In conventional plasticity, the homo-
geneous deformation energy is almost constant re-
gardless of semi-cone angle since the magnitude of 
these components is dependent on the entry and exit 
size of the die. However, if material size is reduced to 
a few micrometers, normal stress components are 
influenced by strain gradient (See Eq. (12)). The 
strain gradient is affected by semi-cone angle of die 
(See Fig. 6). As a result, the homogeneous deforma-
tion energy of material size ‘S’ changes as the semi-
cone angle does. Friction energy calculated from 
strain gradient plasticity is larger than that from con-
ventional plasticity by about 30%. Shear deformation 
energy along semi-cone angle increases apart from 
strain gradient plasticity theory. However, its incre-
ment is much larger when strain gradient plasticity 
theory is taken into account. Thus, we can know that 
the optimal semi-cone angle becomes smaller owing 
to increment of homogenous deformation energy 
caused by strain gradient. 

 
5. Concluding remarks 

To study the deformation behavior of ultra-fine size 
material in wire drawing process, we have presented a 
more effective methodology for the FE analysis of 
strain gradient plasticity theory in the steady-state 
metal forming process. We introduced the concept of 
strain surface function to embrace the effect of strain 
gradient on the conventional steady-state rigid-plastic 
FE formulation. The main merit of the proposed ap-
proach lies in that the conventional FE code can be 
used in the deformation analysis of micro-sized mate-
rial without changing the main structure of the code. 
Polycrystalline copper (intrinsic material length: 1.54 
µm) was used. To investigate the effect of material 
size on its deformation behavior, specimens with 
diameter of 2 µm and 20 µm were selected. The con-
clusions are summarized as follows: 

When the material size approaches its intrinsic 
length the strain gradient becomes significant. If the 
material satisfying the above condition is deformed 
plastically, an additional work hardening occurs at the 
region where the strain gradient is noteworthy. 
Analysis of energy components (homogeneous de-
formation, friction energy, shear deformation) during 
wire drawing reveals that the optimal semi-cone angle 
of the die changes as material size reaches its intrinsic 
length. The change of semi-cone angle strongly de-
pends on homogeneous deformation energy. 
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Results obtained in this study might give impetus 
on that a wire drawing process designer might have to 
consider that the optimal semi-cone angle of the die 
reduces about 30% if material size is close to its in-
trinsic material length. Analysis method proposed in 
this study may give an important guideline in compu-
tation of mechanical state of material during deforma-
tion, not only in wire drawing process but also in 
various micro deformation process such as micro-
forming and micro-machining. 
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